Neutral Atom Imaging of Solar Wind Interaction With the Earth And Venus

M.-C. Fok, T. E. Moore, M. R. Collier, G. Chin, M. L. Goldstein NASA Goddard Space Flight Center, USA

T. Tanaka Kyushu University, Japan

April 10, 2003 EGS-AGU-EUG Joint Meeting Nice, France

Outline

- Solar wind magnetosphere interaction seen by IMAGE/LENA (Low Energy Neutral Atom) imager
- Solar wind interaction with Venus ionosphere and upper atmosphere
- Simulation of LENA emissions on Venus
 - Tanaka's MHD model
 - VIRA exosphere model

Neutral Atom Emissions in the Terrestrial Magnetosheath

IMAGE/LENA Magnetosheath Emissions on 31 March 2001

LENA Observed Magnetosheath Response to Extreme Solar Wind Conditions

Solar Wind Interaction with Venus Atmosphere

[Taken from Donahue and Russell, 1997]

Tanaka's MHD Model

 $Vsw = 311 \text{ km/s}, Nsw = 14 \text{ cm}^{-3}, IMF Bz = 14 \text{ nT}$

O⁺ are created by:

$$O + hv \rightarrow O^+ + e$$

 $CO_2^+ + O \rightarrow O^+ + CO_2$

Assume H⁺ and O⁺ have the same flow velocity and temperature

Venus International Reference Atmospheric (VIRA) Model

Simulated Venus LENA Image: H

Simulated Venus LENA Image: O

Finding in-situ Temperatures and Densities of Hot Neutrals from Ram Signals

Temperature:

 $tan \ \sigma = V_{th}/V_{s/c}$

 $V_{th} \to T\,$

Density:

 $n = (total flux) / V_{s/c}$

Energetic Neutral Atom Emission and Escape Rates

Summary

- Neutral atom image has been proven as a new tool for studying the solar wind interaction with the terrestrial magnetosphere. Locations of the magnetopause and cusps can be deduced from neutral atom images.
- Simulation study has shown significant low-energy (0 10 keV) neutral atom emissions from Venus.
- Venus magnetosheath emissions have similar features and comparable intensity as those from the Earth during extreme solar wind condition.
- Low-energy neutral O image from Venus can be used to probe the location of the ionopause.
- The estimated total O escape rate from Venus is $\sim 1.5 \times 10^{25}$ s⁻¹.
- Future works:
 - Future Venus mission should carry LENA-type instrument.
 - Non-MHD modeling of O⁺ on Venus